Chapter 5. Fisher's Exact P-Values for Completely Randomized Experiments

Yeonho Jung

July 15, 2022

Seoul National University

Contents

- 5.1 Introduction
- 5.2 The Paul Honey Experiment Data
- 5.3 A Simple Example With Six Units
- 5.4 The Choice of Null-Hypothesis
- 5.5 The Choice of Statistic
- 5.6 A Small Simulation Study
- 5.7 Interval Estimates
- 5.8 Computation of P-Values
- 5.9 Fisher Exact P-Values with Covariates
- 5.10 Fisher Exact P-Values for the Honey Data
- 5.11 Conclustion

Fisher's Exact P-Values : FEPs

1 The sharp(or exact) null hypothesis(Fisher, 1935)

- (T) : Test Statistic
- (Y_i^{obs}) : The observed outcomes \rightarrow Y(0), Y(1)
- (W) : A function of the stochastic assignment vector
- (X) : Any pre-treatment variables

Pisher Exact P-values(FEPs) : Two steps

- The choice of a sharp null hypothesis
- The choice of test statistic
- **3** Data Set : Honey Experiment Data for Coughing Children
 - Calculating FEPs(Choice of null hypothesis and Test statistic)

Data : a randomized experiment of three treatments

- Three treatments are :
 - i . single dose of buckwheat honey \bigstar
 - iii. A single dose of honey-flavored dex-tromethorphan
 - iii. no active treatment ★

- $N=72 \rightarrow N_t=35$ (buckwheat honey), $N_t=37$ (no treatment)
 - Variable(cfa, csa, csp, csa) : Cough Frequency and Severity
 - Outcome Scale : 0 to 6

5.3. A Simple Example with Six Units(1/3)

<A subsample from the honey data set, with 6 children>

Unit	Potential Outcomes						
	Cough F	requency (cfa)	Observed Variables				
	$Y_i(0)$	$Y_i(1)$	Wi	X _i (cfp)	Y _i ^{obs} (cfa)		
1	?	3	1	4	3		
2	?	5	1	6	5		
3	?	0	1	4	0		
4	4	?	0	4	4		
5	0	?	0	1	0		
6	1	?	0	5	1		

Table 5.3. Cough Frequency for the First Six Units from the Honey Study

- Fundamental problem of casual inference shown on Table 5.3
 - $W_i = 1$: treatment group, Y_i^{obs} , X_i^{obs} : cfp
 - Problems : Many of the potential outcomes are missing

5.3. A Simple Example with Six Units(2/3)

<A subsample from the honey data set, with 6 children>

- $H_0: Y_i(0) = Y_i(1) \rightarrow$ Null hypothesis
 - The treatment had no effect on coughing outcomes
 - the missing outcomes $Y_i^{mis} = Y_i^{obs}$
 - By using the observed data, we can fill in all 6 '?'
- By Null hypothesis we can fill in :

Unit	Potential Outcomes						
	Cough Fi	requency (cfa)	Observed Variables				
	$\overline{Y_i(0)}$	$Y_i(1)$	Treatment	X_i	$Y_i^{\rm obs}$	$rank(Y_i^{obs})$	
1	(3)	3	1	4	3	4	
2	(5)	5	1	6	5	6	
3	(0)	0	1	4	0	1.5	
4	4	(4)	0	4	4	5	
5	0	(0)	0	1	0	1.5	
6	1	(1)	0	5	1	3	

5.3. A Simple Example with Six Units(3/3)

<A subsample from the honey data set, with 6 children>

•
$$\mathcal{T} \left(\mathbf{W}, \mathbf{Y}^{\text{obs}} \right) = \mathcal{T}^{\text{dif}} = \left| \overline{Y}_{t}^{\text{obs}} - \overline{Y}_{c}^{\text{obs}} \right|$$

- $\overline{Y}_{t}^{\text{obs}} = \sum_{i:W_{i}=1} Y_{i}^{\text{obs}} / N_{t}$ and $\overline{Y}_{c}^{\text{obs}} = \sum_{i:W_{i}=0} Y_{i}^{\text{obs}} / N_{c}$
- $N_{c} = \sum_{i=1}^{N} (1 - W_{i})$ and $N_{t} = \sum_{i=1}^{N} W_{i}$

- Each vector of treatment assignments, W does not change the values of outcomes
 - $T(\mathbf{W}, \mathbf{Y}^{obs})$ varies with W, 20 possible vectors

						Statistic: Absolute Value of Difference in Average		
W_1	W_2	W_3	W_4	W_5	W_6	Levels (Y_i)	Ranks (R_i)	
					1			
1	1	0	0	0	. 1	1.67	1.67	
l	1	0	0	1	0	1.00	0.67	
1	1	0	1	0	0	3.67	3.00	
1	1	1	0	0	0	1.00	0.67	

Table 5.5. Randomization Distribution for Two Statistics for the Honey Data from Table 5.3

Fisher only focused on what is the most obvious null hypothesis, **that of no effect whatsoever of the active treatment**

• $H_0: Y_i(0) = Y_i(1) \rightarrow$ Null hypothesis

- The first choice when calculating the FEP is the choice of null hypothesis
- The null hypothesis is that of no effect whatsoever $Y_i(0) = Y_i(1), Y_i^{mis} = Y_i^{obs}$

The choice of test statistic is more difficult than the choice of the null hypothesis

1 Test statistic : to find a p-value under the null hypothesis

• Transformations

- Attractive option when it comes to constant multiplicative effect of the treatment

-
$$T^{log} = \left| \sum_{i:W_i=1} ln(Y_i^{obs}) / N_t - \sum_{i:W_i=0} ln(Y_i^{obs}) / N_c \right|$$

- T-Statistics
 - Equal means, with unequal variances in the two groups

$$-T^{t-stat} = \left| \overline{Y_t^{obs}} - \overline{Y_c^{obs}} / \sqrt{s_c^2 / N_c + s_t^2 / N_t} \right|$$

Rank-Statistics

- Transforming the outcomes to ranks

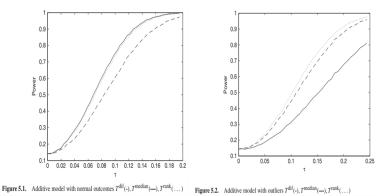
-
$$T^{rank} = \left|\overline{R^t} - \overline{R^c}\right| = \left|\sum_{i:W_i=1} R_i/N_t - \sum_{i:W_i=0} R_i/N_c\right|$$

- Use when the distribution of raw outcomes has a substantial number of outliers
- Ranks are related to the indexed list of order statistics

5.6. A small Simulation Study

• Three different test statistics

- T^{dif}, T^{med}, T^{rank} : To see how much power they had
- Rank-based statistics is an attractive model and the others play to their advantages according to the settings
- $Y_i(0)$ = $Y_i(1)$ + τ , τ : treatment effect



5.7 \sim 5.10. Fisher's Exact P-values

- Using the pre-treatment variables, Covariates : X_i
 T (W, Y^{obs}) = T^{dif} = | ∇_t^{obs} ∇_c^{obs} |
 T(W, Y^{obs}, X) = ∇_t^{obs} ∇_c^{obs} (X_t X_c)
- P-Values for Honey Data Using Various Statistics

Test Statistic	Statistic	P-Value	
T ^{dif}	-0.697	0.067	
T^{quant} ($\delta = 0.25$)	-1.000	0.440	
T^{quant} ($\delta = 0.50$)	-1.000	0.637	
$T^{\text{quant}} (\delta = 0.75)$	-1.000	0.576	
T ^{t-stat}	-1.869	0.065	
Trank	-9.785	0.043	
T ^{ks}	0.304	0.021	
T ^{F-stat}	3.499	0.182	
Tgain	-0.967	0.006	
T ^{reg-coef}	-0.911	0.008	

- FEP approach
 - : To assess the premise of a sharp null hypothesis
 - Compared to Chi Squared method, FEP is used when samples are small such as 30 samples
 - Under the null hypothesis of absolutely no effect of the treatment, calculate the p-value.